On quasi-Armendariz skew monoid rings
نویسندگان
چکیده مقاله:
Let $R$ be a unitary ring with an endomorphism $σ$ and $F∪{0}$ be the free monoid generated by $U={u_1,…,u_t}$ with $0$ added, and $M$ be a factor of $F$ setting certain monomial in $U$ to $0$, enough so that, for some natural number $n$, $M^n=0$. In this paper, we give a sufficient condition for a ring $R$ such that the skew monoid ring $R*M$ is quasi-Armendariz (By Hirano a ring $R$ is called quasi-Armendariz if whenever $f(x)=Σa_ix^i$ and $g(x)=Σb_jx^j$ in $R[x]$ satisfy $f(x)R[x]g(x)=0$, we have $a_iRb_j=0$ for every $0leq i leq m$ and $0leq j leq n$) and provide rich classes of non-semiprime quasi-Armendariz rings. Let $R$ be a unitary ring with an endomorphism $σ$ and $F∪{0}$ be the free monoid generated by $U={u_1,…,u_t}$ with $0$ added, and $M$ be a factor of $F$ setting certain monomial in $U$ to $0$, enough so that, for some natural number $n$, $M^n=0$. In this paper, we give a sufficient condition for a ring $R$ such that the skew monoid ring $R*M$ is quasi-Armendariz (By Hirano a ring $R$ is called quasi-Armendariz if whenever $f(x)=Σa_ix^i$ and $g(x)=Σb_jx^j$ in $R[x]$ satisfy $f(x)R[x]g(x)=0$, we have $a_iRb_j=0$ for every $0leq i leq m$ and $0leq j leq n$) and provide rich classes of non-semiprime quasi-Armendariz rings.
منابع مشابه
On skew Armendariz and skew quasi-Armendariz modules
Let $alpha$ be an endomorphism and $delta$ an $alpha$-derivationof a ring $R$. In this paper we study the relationship between an$R$-module $M_R$ and the general polynomial module $M[x]$ over theskew polynomial ring $R[x;alpha,delta]$. We introduce the notionsof skew-Armendariz modules and skew quasi-Armendariz modules whichare generalizations of $alpha$-Armendariz modules and extend thecla...
متن کاملon skew armendariz and skew quasi-armendariz modules
let $alpha$ be an endomorphism and $delta$ an $alpha$-derivationof a ring $r$. in this paper we study the relationship between an$r$-module $m_r$ and the general polynomial module $m[x]$ over theskew polynomial ring $r[x;alpha,delta]$. we introduce the notionsof skew-armendariz modules and skew quasi-armendariz modules whichare generalizations of $alpha$-armendariz modules and extend thecla...
متن کاملOn Classical Quotient Rings of Skew Armendariz Rings
Let R be a ring, α an automorphism, and δ an α-derivation of R. If the classical quotient ring Q of R exists, then R is weak α-skew Armendariz if and only if Q is weak α-skew Armendariz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly ci...
متن کاملon skew armendariz and skew quasi-armendariz modules
let $alpha$ be an endomorphism and $delta$ an $alpha$-derivationof a ring $r$. in this paper we study the relationship between an$r$-module $m_r$ and the general polynomial module $m[x]$ over theskew polynomial ring $r[x;alpha,delta]$. we introduce the notionsof skew-armendariz modules and skew quasi-armendariz modules whichare generalizations of $alpha$-armendariz modules and extend thecla...
متن کاملOre extensions of skew $pi$-Armendariz rings
For a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-Armendariz ring, that is a generalization of both $pi$-Armendariz rings, and $(alpha,delta)$-compatible skew Armendariz rings. We first observe the basic properties of skew $pi$-Armendariz rings, and extend the class of skew $pi$-Armendariz rings through various ring extensions. We nex...
متن کاملore extensions of skew $pi$-armendariz rings
for a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-armendariz ring, that is a generalization of both $pi$-armendariz rings, and $(alpha,delta)$-compatible skew armendariz rings. we first observe the basic properties of skew $pi$-armendariz rings, and extend the class of skew $pi$-armendariz rings through various ring extensions. we nex...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 24
صفحات 45- 52
تاریخ انتشار 2020-05-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023